基因突变的定义是什么

基因突变指基因组DNA分子发生的突然的、可遗传的变异现象。主要类型碱基置换突变、移码突变、缺失突变、插入突变。 1、碱基置换突变:指DNA分子中一个碱基对被另一个不同的碱基对取代所引起的突变,也称为点突变。 2、移码突变:指DN段中某一

基因突变的定义是什么

基因突变的定义

DNA分子中发生碱基对的替换、增添、和缺失,而引起的基因结构的改变,叫做基因突变

基因突变是指基因组DNA分子发生的一些突然的、可遗传的变异现象。

DNA分子中发生碱基对的替换、增添、和缺失,而引起的基因结构的改变,叫做基因突变

从分子水平上看,基因突变是指基因在结构上发生碱基对组成或排列顺序的改变。基因虽然十分稳定,能在细胞时精确地复制自己,但这种稳定性是相对的。在一定的条件下,基因也可以从原来的存在形式突然改变成另一种新的存在形式,就是在同一个位点上,一对核苷酸变成了另一种核苷酸,编码的信息也随着改变。于是后代的表型也就出现与祖先不一样的表型。

的突然的、可遗传的变异现象。基因突变分为四种类型,分别为碱基置换突变、移码突变、缺失突变和插入突变。基因突变的后果是出现了一个新基因,代替了原有基因,这个基因叫做突变基因,于是后代的表现中也就突然地出现祖先从未有的新性状。 基因

研究基因突变的的作用

基因突变是指基因在结构上发生碱基对组成或排列顺序的改变。 我这个可能不太准,其实,高中生物必修二课本上面有的,你可以看看。希望我的回答能帮到你~

基因突变和脱氧核糖核酸的复制、DNA损伤修复、癌变和衰老都有关系,基因突变也是生物进化的重要因素之一,没有突变,就没有生物的遗传多样性,进化也就没有动力。所以研究基因突变除了本身的理论意义以外还有广泛的生物学意义。基因突变为遗传学研究提供突变型,为育种工作提供素材,所以它还有科学研究和生产上的实际意义。

一个基因内部遗传结构的改变。又称为点突变,通常可引起一定的表型变化。野生型基因通过突变成为突变型基因。突变型一词既指突变基因,也指具有这一突变基因的个体。任何类型的突变,都具有随机性、稀有性和可逆性等共同的特性。①随机性。指基因

扩展阅读,以下内容您可能还感兴趣。

基因突变的概念

基因突变的概念:

从分子水平上看,基因突变是指基因在结构上发生碱基对组成或排列顺序的改变。基因虽然十分稳定,能在细胞*时精确地复制自己,但这种稳定性是相对的。在一定的条件下基因也可以从原来的存在形式突然改变成另一种新的存在形式,就是在一个位点上,突然出现了一个新基因,代替了原有基因,这个基因叫做突变基因。于是后代的表现中也就突然地出现祖先从未有的新性状。

基因突变可以发生在发育的任何时期,通常发生在DNA复制时期,即细胞*间期,包括有丝*间期和减数*间期;同时基因突变和脱氧核糖核酸的复制、DNA损伤修复、癌变和衰老都有关系,基因突变也是生物进化的重要因素之一,所以研究基因突变除了本身的理论意义以外还有广泛的生物学意义。基因突变为遗传学研究提供突变型,为育种工作提供素材,所以它还有科学研究和生产上的实际意义。

基因突变的特性:

普遍性

基因突变在自然界各物种中普遍存在。

随机性

T.H.摩尔根在饲养的许多红色复眼的果蝇中偶然发现了一只白色复眼的果蝇。这一事实说明基因突变的发生在时间上、在发生这一突变的个体上、在发生突变的基因上,都是随机的。以后在高等植物中所发现的无数突变都说明基因突变的随机性。在细菌中则情况远为复杂。在含有某一种药物的培养基中培养细菌时往往可以得到对于这一药物具有抗性的细菌,因此曾经认为细菌的抗药性的产生是药物引起的,是定向的适应而不是随机的突变。S.卢里亚和M.德尔布吕克在1943年首先用波动测验方法证明在大肠杆菌中的抗噬菌体细菌的出现和噬菌体的存在无关。J.莱德伯格等在1952年又用印影接种方法证实了这一论点。方法是把大量对于药物敏感的细菌涂在不含药物的培养基表面,把这上面生长起来的菌落用一块灭菌的丝绒作为接种工具印影接种到含有某种药物的培养基表面,使得两个培养皿上的菌落的位置都一一对应。根据后一培养基表面生长的个别菌落的位置,可以在前一培养皿上找到相对应的菌落。在许多情况下可以看到这些菌落具有抗药性。由于前一培养基是不含药的,因此这一实验结果非常直观地说明抗药性的出现不依赖于药物的存在,而是随机突变的结果,只不过是通过药物将它们检出而已。

稀有性

在第一个突变基因发现时,不是发现若干白色复眼果绳而是只发现一只,说明突变是极为稀有的,也就是说野生型基因以极低的突变率发生突变(一些有代表性的基因突变率见表)。在有性生殖的生物中,突变率用每一配子发生突变的概率,也就是用一定数目配子中的突变型配子数表示。在无性生殖的细菌中,突变率用每一细胞世代中每一细菌发生突变的概率,也就是用一定数目的细菌在*一次过程中发生突变的次数表示。据估计,在高等生物中,大约10^5~10^8个生殖细胞中,才会有1个生殖细胞发生基因突变。虽然基因突变的频率很低,但是当一个种群内有许多个体时,就有可能产生各种各样的随机突变,足以提供丰富的可遗传的变异。

可逆性

野生型基因经过突变成为突变型基因的过程称为正向突变。正向突变的稀有性说明野生型基因是一个比较稳定的结构。突变基因又可以通过突变而成为野生型基因,这一过程称为回复突变。从表中同样可以看到回复突变是难得发生的,说明突变基因也是一个比较稳定的结构。不过,正向突变率总是高于回复突变率,这是因为一个野生型基因内部的许多位置上的结构改变都可以导致基因突变,但是一个突变基因内部只有一个位置上的结构改变才能使它恢复原状。

少利多害性

一般基因突变会产生不利的影响,被淘汰或是死亡,但有极少数会使物种增强适应性。

不定向性

例如控制黑毛A基因可能突变为控制白毛的a+或控制绿毛的a-基因。

有益性

一般基因突变是有害的,但是有极为少数的是有益突变。例如一只鸟的嘴巴很短,突然突变变种后,嘴巴会变长,这样会容易捕捉食物或水。

独立性

某一基因位点的一个等位基因发生突变,不影响另一个等位基因,即等位基因中的两个基因不会同时发生突变。

①隐性突变:当代不表现,F2代表现。

②显性突变:当代表现,与原性状并存,形成镶嵌现象或嵌合体。

重演性

同一生物不同个体之间可以多次发生同样的突变。

什么是基因突变?

的突然的、可遗传的变异现象。基因突变分为四种类型,分别为碱基置换突变、移码突变、缺失突变和插入突变。基因突变的后果是出现了一个新基因,代替了原有基因,这个基因叫做突变基因,于是后代的表现中也就突然地出现祖先从未有的新性状。

基因突变可以发生在发育的任何时期,通常发生在DNA复制时期,即细胞*间期,包括有丝*间期和减数*间期;同时基因突变和脱氧核糖核酸的复制、DNA损伤修复、癌变和衰老都有关系,另外,基因突变也是生物进化的重要因素之一。

扩展资料

基因突变的特点:

1、普遍性。基因突变在自然界各物种中普遍存在。

2、随机性。基因突变的发生在时间上、在发生这一突变的个体上、在发生突变的基因上,都是随机的。

3、少利多害性。一般基因突变会产生不利的影响,被淘汰或是死亡,但有极少数会使物种增强适应性。

4、不定向性。例如控制黑毛A基因可能突变为控制白毛的a+或控制绿毛的a-基因。

5、有益性。一般基因突变是有害的,但是有极为少数的是有益突变。

什么是基因突变(高中定义)

基因突变是指基因在结构上发生碱基对组成或排列顺序的改变。

我这个可能不太准,其实,高中生物必修二课本上面有的,你可以看看。希望我的回答能帮到你~

什么是基因突变?它具有什么特点?

一个基因内部遗传结构的改变。又称为点突变,通常可引起一定的表型变化。野生型基因通过突变成为突变型基因。突变型一词既指突变基因,也指具有这一突变基因的个体。任何类型的突变,都具有随机性、稀有性和可逆性等共同的特性。①随机性。指基因突变的发生在时间上、在发生这一突变的个体上、在发生突变的基因上,都是随机的。在高等植物中所发现的无数突变都说明基因突变的随机性。在细菌中则情况远为复杂。②稀有性。突变是极为稀有的,野生型基因以极低的突变率发生突变。④少利多害性。一般基因突变会产生不利的影响,被淘汰或是死亡,但有极少数会使物种增强适应性。本回答被提问者采纳

什么是基因突变

基因突变是指由于DNA碱基对的置换、增添或缺失而引起的基因结构的变化,亦称点突变。在自然条件下发生的突变叫自发突变,由人工利用物理因素或化学药剂诱发的突变叫诱发突变。基因突变是生物变异的主要原因,是生物进化的主要因素。在生产上人工诱变是产生生物新品种的重要方法。

根据基因结构的改变方式,基因突变可分为碱基置换突变和移码突变两种类型。

碱基置换突变:由一个错误的碱基对替代一个正确的碱基对的突变叫碱基置换突变。例如在DNA分子中的GC碱基对由CG或AT或TA所代替,AT碱基对由TA或GC或CG所代替。碱基替换过程只改变被替换碱基的那个密码子,也就是说每一次碱基替换只改变一个密码子,不会涉及到其他的密码子。引起碱基置换突变的原因和途径有两个。一是碱基类似物的掺入,例如在大肠杆菌培养基中加入5-溴尿嘧院(BU)后,会使DNA的一部分胸腺嘧啶被BU所取代,从而导致AT碱基对变成GC碱基对,或者GC碱基对变成AT碱基对。二是某些化学物质如亚*、亚硝基胍、硫酸二乙酯和氮芥等,以及紫外线照射,也能引起碱基置换突变。

移码突变:基因中插入或者缺失一个或几个碱基对,会使DNA的阅读框架(读码框)发生改变,导致插入或缺失部位之后的所有密码子都跟着发生变化,结果产生一种异常的多肽链。移码突变诱发的原因是一些像吖啶类染料分子能插入DNA分子,使DNA复制时发生差错,导致移码突变。

根据遗传信息的改变方式,基因突变又可以分为同义突变、错义突变和无义突变三种类型。

同义突变:有时DNA的一个碱基对的改变并不会影响它所编码的蛋白质的氨基酸序列,这是因为改变后的密码子和改变前的密码子是简并密码子,它们编码同一种氨基酸,这种基因突变称为同义突变。

错义突变:由于一对或几对碱基对的改变而使决定某一氨基酸的密码子变为决定另一种氨基酸的密码子的基因突变叫错义突变。这种基因突变有可能使它所编码的蛋白质部分或完全失活,例如人血红蛋白β链的基因如果将决定第6位氨基酸(谷氨酸)的密码子由CTT变为CAT,就会使它合成出的β链多肽的第6位氨基酸由谷氨酸变为缬氨酸,从而引起镰刀形细胞贫血病。

无义突变:由于一对或几对碱基对的改变而使决定某一氨基酸的密码子变成一个终止密码子的基因突变叫无义突变。其中密码子改变为UAG的无义突变又叫琥珀突变,密码子改变成UAA的无义突变又叫赭石突变

分子遗传学中,营养缺陷型是指通过诱变而使得一些营养物质(如氨基酸)的合成能力出现缺陷,必须在基本培养基(如由葡萄糖和无机盐组成的培养基)中加入相应的有机成分才能正常生长的突变菌株或突变细胞。例如,野生型大肠杆菌在基本培基中能够正常生长,而组氨酸缺陷型的大肠杆菌(记为His-)只有在基本培养基中加入适量的组氨酸时才能正常生长。突变型基因转变成野生型基因的过程叫回复突变。例如把大量的His-大肠杆菌细胞接种在不含组氨酸的基本培养基中,会有极少量的细胞能够生长,出现这种情况的原因主要是这些细胞的组氨酸缺陷基因已回复为正常基因(记为His+)。

某一突变基因的表型效应由于第二个突变基因的出现而恢复正常时,称后一突变基因为前者的抑制基因。抑制基因并没有改变突变基因的DNA结构,而只是使突变型的表型恢复正常。例如,酪氨酸的密码子是UAC,置换突变使UAC变为无义密码子UAG后翻译便到此停止。如果酪氨酸tR-NA基因发生突变,使它的反密码子由 AUG变为 AUC时,其tRNA仍然能与酪氨酸结合,而且它的反密码子AUC也能与突变的无义密码子UAG配对。因此这一突变型tRNA,能使无义突变密码子位置上照常出现酪氨酸,而使翻译正常进行。这里酪氨酸tRNA的突变基因便是前一个无义突变的抑制基因。

基因突变的特点

基因突变作为生物变异的一个重要来源,它具有以下主要特点:

第一,基因突变在生物界中是普遍存在的。无论是低等生物,还是高等的动植物以及人,都可能发生基因突变。基因突变在自然界的物种中广泛存在。例如,棉花的短果枝、水稻的矮杆、糯性,果蝇的白眼、残翅,家鸽羽毛的灰红色,以及人的色肓、糖尿病、白化病等遗传病,都是突变性状。自然条件下发生的基因突变叫做自然突变,人为条件下诱发产生的基因突变叫做诱发突变。

第二,基因突变是随机发生的。它可以发生在生物个体发育的任何时期和生物体的任何细胞。一般来说,在生物个体发育的过程中,基因突变发生的时期越迟,生物体表现突变的部分就越少。例如,植物的叶芽如果在发育的早期发生基因突变,那么由这个叶芽长成的枝条,上面着生的叶、花和果实都有可能与其他枝条不同。如果基因突变发生在花芽分化时,那么,将来可能只在一朵花或一个花序上表现出变异。

基因突变可以发生在体细胞中,也可以发生在生殖细胞中。发生在生殖细胞中的突变,可以通过受精作用直接传递给后代。发生在体细胞中的突变,一般是不能传递给后代的。

第三,在自然状态下,对一种生物来说,基因突变的频率是很低的。据估计,在高等生物中,大约十万个到一亿个生殖细胞中,才会有一个生殖细胞发生基因突变,突变率是105~108。不同生物的基因突变率是不同的。例如,细菌和噬菌体等微生物的突变率比高等动值物的要低。同一种生物的不同基因,突变率也不相同。例如,玉米的抑制色素形成的基因的突变率为1.06×10-4,而*胚乳基因的突变率为2.2×10-6.

第四,大多数基因突变对生物体是有害的,由于任何一种生物都是长期进化过程的产物,它们与环境条件已经取得了高度的协调。如果发生基因突变,就有可能破坏这种协调关系。因此,基因突变对于生物的生存往往是有害的。例如,绝大多数的人类遗传病,就是由基因突变造成的,这些病对人类健康构成了严重威胁。又如,植物中常见的白化苗,也是基因突变形成的。这种苗由于缺乏叶绿素,不能进行光合作用制造有机物,最终导致死亡。但是,也有少数基因突变是有利的。例如,植物的抗病性突变、耐旱性突变、微生物的抗药性突变等,都是有利于生物生存的。

第五,基因突变是不定向的。一个基因可以向不同的方向发生突变,产生一个以上的等位基因。例如,控制小鼠毛色的灰色基因(A+)可以突变成*基因(AY)。也可以突变成黑色基因(a).但是每一个基因的突变,都不是没有任何*的。例如,小鼠毛色基因的突变,只限定在色素的范围内,不会超出这个范围。本回答被提问者采纳